Sunday, 17 November 2013

Java Collection Literals

The blog post I've had by far the most feedback on is Java Multiline String. It seems to have found a niche with a few programmers for quickly defining formatted SQL and XML for unit testing.

After reading Steve Yegge's post which covered the lack of Java syntax for defining literal data objects, I thought the multiline string code could be extended to provide this kind of syntax for Java Collections.

The code below, like the multiline string code, uses Javadoc comments, annotations and annotation processors to generate code at compile time to initialise and populate a collection.

Collection fields are annotated with an annotation which specifies which annotation processor to use. The annotation processor uses the fields Javadoc comment, which contains a JSON string, to generate additional code to populate the field.

For example, the annotation used to initialise a List field as an ArrayList:

ArrayList.java

package org.adrianwalker.collectionliterals;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.SOURCE)
public @interface ArrayList {
}

The code generation is handled using an annotation processor for each annotation, with common code being inherited from an abstract class:

AbstractCollectionProcessor.java

package org.adrianwalker.collectionliterals;

import com.sun.source.tree.ClassTree;
import com.sun.source.util.Trees;
import com.sun.tools.javac.code.Flags;
import com.sun.tools.javac.code.Symbol;
import com.sun.tools.javac.model.JavacElements;
import com.sun.tools.javac.processing.JavacProcessingEnvironment;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.JCTree.JCExpression;
import com.sun.tools.javac.tree.JCTree.JCMethodInvocation;
import com.sun.tools.javac.tree.TreeMaker;
import com.sun.tools.javac.util.Context;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.util.ListBuffer;
import com.sun.tools.javac.util.Names;
import java.util.Collection;
import java.util.Set;
import javax.annotation.processing.AbstractProcessor;
import javax.annotation.processing.ProcessingEnvironment;
import javax.annotation.processing.RoundEnvironment;
import javax.lang.model.element.Element;
import javax.lang.model.element.TypeElement;
import org.codehaus.jackson.map.ObjectMapper;

public abstract class AbstractCollectionProcessor<C> extends AbstractProcessor {

  private static final String THIS = "this";
  private JavacElements elementUtils;
  private TreeMaker maker;
  private Trees trees;
  private Names names;

  @Override
  public void init(final ProcessingEnvironment procEnv) {
    super.init(procEnv);
    JavacProcessingEnvironment javacProcessingEnv = (JavacProcessingEnvironment) procEnv;
    Context context = javacProcessingEnv.getContext();
    this.elementUtils = javacProcessingEnv.getElementUtils();
    this.maker = TreeMaker.instance(context);
    this.trees = Trees.instance(procEnv);
    this.names = Names.instance(context);
  }

  public JavacElements getElementUtils() {
    return elementUtils;
  }

  public TreeMaker getMaker() {
    return maker;
  }

  public Trees getTrees() {
    return trees;
  }

  public Names getNames() {
    return names;
  }

  @Override
  public boolean process(final Set<? extends TypeElement> annotations, final RoundEnvironment roundEnv) {

    Set<? extends Element> fields = roundEnv.getElementsAnnotatedWith(getAnnotationClass());

    for (Element field : fields) {
      String docComment = elementUtils.getDocComment(field);

      if (null == docComment) {
        continue;
      }

      processField(field, parseJson(docComment));
    }

    return true;
  }

  private C parseJson(final String json) throws ProcessorException {

    ObjectMapper mapper = new ObjectMapper();

    C collection;
    try {
      collection = (C) mapper.readValue(json, getCollectionClass());
    } catch (final Throwable t) {
      throw new ProcessorException(t);
    }

    return collection;
  }

  private void processField(final Element field, final C collection) {

    JCTree fieldTree = elementUtils.getTree(field);
    JCTree.JCVariableDecl fieldVariable = (JCTree.JCVariableDecl) fieldTree;
    Symbol.VarSymbol fieldSym = fieldVariable.sym;
    boolean isStatic = fieldSym.isStatic();
    JCTree.JCExpression fieldEx;

    if (!isStatic) {
      fieldEx = maker.Ident(names.fromString(THIS));
      fieldEx = maker.Select(fieldEx, fieldSym.name);
    } else {
      fieldEx = maker.QualIdent(fieldSym);
    }

    Symbol.ClassSymbol collectionClass = elementUtils.getTypeElement(getCollectionClassName());
    JCTree.JCExpression collectionEx = maker.QualIdent(collectionClass);

    JCTree.JCNewClass newCollection = maker.NewClass(
            null,
            List.<JCTree.JCExpression>nil(),
            collectionEx,
            List.<JCTree.JCExpression>nil(), null);

    JCTree.JCAssign assign = maker.Assign(fieldEx, newCollection);
    JCTree.JCStatement assignStatement = maker.Exec(assign);

    JCExpression collectionMethodEx = maker.Select(fieldEx, names.fromString(getCollectionMethodName()));

    ListBuffer blockBuffer = new ListBuffer();
    blockBuffer.add(assignStatement);
    blockBuffer.appendList(processCollection(collection, collectionMethodEx));

    long flags = Flags.BLOCK;
    if (isStatic) {
      flags |= Flags.STATIC;
    }

    JCTree.JCBlock block = maker.Block(flags, blockBuffer.toList());

    TypeElement type = (TypeElement) field.getEnclosingElement();
    ClassTree cls = trees.getTree(type);

    JCTree.JCClassDecl cd = (JCTree.JCClassDecl) cls;

    cd.defs = cd.defs.append(block);
  }

  public List processCollection(final C collection, final JCTree.JCExpression collectionMethodEx) {
    ListBuffer collectionMethodBuffer = new ListBuffer();

    for (Object element : (Collection) collection) {

      ListBuffer addBuffer = new ListBuffer();
      addBuffer.add(getMaker().Literal(element));

      JCMethodInvocation addInv = getMaker().Apply(
              List.<JCTree.JCExpression>nil(),
              collectionMethodEx,
              addBuffer.toList());
      JCTree.JCStatement addStatement = getMaker().Exec(addInv);

      collectionMethodBuffer.add(addStatement);
    }

    return collectionMethodBuffer.toList();
  }

  public abstract Class getAnnotationClass();

  public abstract String getCollectionClassName();

  public abstract Class getCollectionClass();

  public abstract String getCollectionMethodName();
}

This class can be extended to create a concrete implementation, for an ArrayList field:

ArrayListProcessor.java

package org.adrianwalker.collectionliterals;

import java.util.ArrayList;
import javax.annotation.processing.SupportedAnnotationTypes;
import javax.annotation.processing.SupportedSourceVersion;
import javax.lang.model.SourceVersion;

@SupportedAnnotationTypes({"org.adrianwalker.collectionliterals.ArrayList"})
@SupportedSourceVersion(SourceVersion.RELEASE_6)
public final class ArrayListProcessor extends AbstractCollectionProcessor<ArrayList<Object>> {

  @Override
  public Class getAnnotationClass() {
    return org.adrianwalker.collectionliterals.ArrayList.class;
  }

  @Override
  public Class getCollectionClass() {
    return java.util.ArrayList.class;
  }

  @Override
  public String getCollectionClassName() {
    return getCollectionClass().getName();
  }

  @Override
  public String getCollectionMethodName() {
    return "add";
  }
}

Because Java Maps don't implement the Collection interface, the processor for a HashMap field is a bit more complicated:

HashMapProcessor.java

package org.adrianwalker.collectionliterals;

import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.JCTree.JCMethodInvocation;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.util.ListBuffer;
import java.util.HashMap;
import java.util.Map.Entry;
import javax.annotation.processing.SupportedAnnotationTypes;
import javax.annotation.processing.SupportedSourceVersion;
import javax.lang.model.SourceVersion;

@SupportedAnnotationTypes({"org.adrianwalker.collectionliterals.HashMap"})
@SupportedSourceVersion(SourceVersion.RELEASE_6)
public final class HashMapProcessor extends AbstractCollectionProcessor<HashMap<String, Object>> {

  @Override
  public List processCollection(final HashMap<String, Object> collection, final JCTree.JCExpression collectionMethodEx) {
    ListBuffer collectionMethodBuffer = new ListBuffer();

    for (Entry<String, Object> entry : collection.entrySet()) {

      ListBuffer putBuffer = new ListBuffer();
      putBuffer.add(getMaker().Literal(entry.getKey()));
      putBuffer.add(getMaker().Literal(entry.getValue()));

      JCMethodInvocation putInv = getMaker().Apply(
              List.<JCTree.JCExpression>nil(),
              collectionMethodEx,
              putBuffer.toList());
      JCTree.JCStatement putStatement = getMaker().Exec(putInv);

      collectionMethodBuffer.add(putStatement);
    }

    return collectionMethodBuffer.toList();
  }

  @Override
  public Class getAnnotationClass() {
    return org.adrianwalker.collectionliterals.HashMap.class;
  }

  @Override
  public Class getCollectionClass() {
    return java.util.HashMap.class;
  }

  @Override
  public String getCollectionClassName() {
    return getCollectionClass().getName();
  }

  @Override
  public String getCollectionMethodName() {
    return "put";
  }
}

The code to use the annotations would look something like this for a class with static fields:

CollectionLiteralUsageStatic.java

package org.adrianwalker.collectionliterals;

import java.util.List;
import java.util.Map;
import java.util.Set;

public final class CollectionLiteralUsageStatic {

  /**
   [1,2,3,4,5,6,7,8,9,10]
   */
  @ArrayList
  private static List<Integer> list;
  /**
   ["0","1","2","3","4","5","6","7",
   "8","9","A","B","C","D","E","F"]
   */
  @HashSet
  private static Set<String> set;  
  /**
   {
     "name":"Adrian Walker", 
     "age":31 
   }
   */
  @HashMap
  private static Map<String, Object> map;

  public static void main(final String[] args) {
    System.out.println(list);
    System.out.println(set);
    System.out.println(map);
  }
}

And example code for classes with instance fields:

package org.adrianwalker.collectionliterals;

import java.util.List;
import java.util.Map;
import java.util.Set;

public final class CollectionLiteralUsage {

  /**
   [1,2,3,4,5,6,7,8,9,10]
   */
  @LinkedList
  private List<Integer> list;
  /**
   ["0","1","2","3","4","5","6","7", 
   "8","9","A","B","C","D","E","F"]
   */
  @HashSet
  private Set<String> set;
  /**
   {
     "name":"Adrian Walker", 
     "age":31 
   }
   */
  @HashMap
  private Map<String, Object> map;

  public List getList() {
    return list;
  }

  public Set<String> getSet() {
    return set;
  }

  public Map getMap() {
    return map;
  }

  public static void main(final String[] args) {
    CollectionLiteralUsage collectionUsage = new CollectionLiteralUsage();
    System.out.println(collectionUsage.getList());
    System.out.println(collectionUsage.getSet());
    System.out.println(collectionUsage.getMap());
  }
}

As before with the multiline code, remember to include an <annotationProcessor> element when compiling classes which use the annotations when using Maven.

pom.xml

...
<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-compiler-plugin</artifactId>
  <version>2.3.2</version>
  <configuration>
    <source>1.6</source>
    <target>1.6</target>
    <annotationProcessors>
      <annotationProcessor>
        org.adrianwalker.collectionliterals.ArrayListProcessor
      </annotationProcessor>
      <annotationProcessor>
        org.adrianwalker.collectionliterals.LinkedListProcessor
      </annotationProcessor>
      <annotationProcessor>
        org.adrianwalker.collectionliterals.HashSetProcessor
      </annotationProcessor>
      <annotationProcessor>
        org.adrianwalker.collectionliterals.HashMapProcessor
      </annotationProcessor>
    </annotationProcessors>
  </configuration>
</plugin>
...

A commenter on Stack Overflow had expressed an issue with this approach having 'a hard dependency on Maven', which is not right. The javac command has direct support for specifying annotation processors: http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/javac.html#processing

Limitations

Currently the code does not support nested data structures, for example this JSON string cannot be used to generate code:

{
  "name":"Adrian Walker",
  "age":31,
  "address":[
    "line1",
    "line2",
    "line3"
  ]
}

Source Code

  • Annotations, annotation processors and example usage code available in GitHub - collection-literals

Rigging the National Lottery (Is Hard)

As I’ve never won the National Lottery jackpot, I’m pretty sure the whole thing is rigged.

If you were in charge of taking peoples hard earned cash off of them and redistributing it back to a few of them, I bet you’d try and minimize the pay-out and pocket as much as you could. Now I’m not saying Camelot UK Lotteries Limited actually does this and The National Lottery is rigged, but you know, they definitely do and it is.

On draw nights, you can’t buy tickets between 7.30pm and 9.00pm before the winning balls are selected. Have you ever wondered what goes on for that hour and a half? I’ll tell you what; they are calculating which balls to select to give you the least money possible.

To minimize the pay-out you would need to compare all the possible combinations of six main balls plus the bonus ball, with all the entry lines which players have picked. Each comparison would check to see how many entry numbers matched the draw numbers, and the number of matches counted for all the entry lines. Finally, for each of the draw ball combinations, the total prize cost can be calculated using the stored matches count and the prize value for that number of matches.

Looking at the lotto prize breakdown from a past week (http://www.national-lottery.co.uk/player/lotto/results/prizeBreakdown.ftl):

Matches No. of winners £s per winner Prize fund
Match 6 1 £7,959,312 £7,959,312
Match 5 plus Bonus 7 £68,525 £479,675
Match 5 176 £2,314 £407,264
Match 4 12,448 £173 £2,153,504
Match 3 256,646 £25 £6,416,150
Lotto Raffle 100 £20,000 £2,000,000
Totals 269,378 £19,415,905

The total prize fund was about £20,000,000. From the Lotto website (http://www.national-lottery.co.uk/player/p/goodcausesandwinners/wherethemoneygoes.ftl), 50% of the money spent goes to the prize fund, which means the total money spent buying tickets was about £40,000,000, which at £2 per ticket gives us:

£40,000,000 / £2 = 20,000,000 entries.

Even if we could compare one entry line to all combinations of draw numbers every second, this would still take:

20,000,000 seconds / (60 * 60 * 24) ~ 232 days

Way too long to process in 90 minutes.

To rig the lotto draw, we're going to need some serious speed. The following is an unoptimised implementation in Java to process ten randomly generated entry lines, to use as a base line benchmark:

Lotto1.java

package org.adrianwalker.lotto;

import java.util.Random;

public final class Lotto1 {

  /*
   * Estimated lotto prizes:
   *   https://www.national-lottery.co.uk/player/p/help/aboutlotto/prizecalculation.ftl
   */
  private static final int MATCH_6_PRIZE = 5000000;
  private static final int MATCH_5_PLUS_BONUS_PRIZE = 50000;
  private static final int MATCH_5_PRIZE = 1000;
  private static final int MATCH_4_PRIZE = 100;
  private static final int MATCH_3_PRIZE = 25;
  // match types
  private static final int MATCH_5_PLUS_BONUS = 7;
  private static final int MATCH_6 = 6;
  private static final int MATCH_5 = 5;
  private static final int MATCH_4 = 4;
  private static final int MATCH_3 = 3;
  // define lowest and highest ball numbers
  private static final int LOW_BALL = 1;
  private static final int HIGH_BALL = 49;
  // array sizes
  private static final int MAIN_BALLS_SIZE = 6;
  private static final int ENTRY_BALLS_SIZE = 6;
  private static final int ENTRIES_SIZE = 10;

  public static void main(final String[] args) {

    // lotto entries, could be read from a database or file?
    int[][] entries = new int[ENTRIES_SIZE][ENTRY_BALLS_SIZE];

    // draw balls for random entries
    int[] balls = {
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
      11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
      21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
      31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
      41, 42, 43, 44, 45, 46, 47, 48, 49
    };

    // create random entries for testing
    for (int i = 0; i < ENTRIES_SIZE; i++) {
      shuffle(balls);
      entries[i][0] = balls[0];
      entries[i][1] = balls[1];
      entries[i][2] = balls[2];
      entries[i][3] = balls[3];
      entries[i][4] = balls[4];
      entries[i][5] = balls[5];
    }

    long start = System.currentTimeMillis();

    // minimum values
    long minCost = Long.MAX_VALUE;
    int[] minCostMainBalls = new int[MAIN_BALLS_SIZE];
    int minCostBonusBall = -1;

    // maximum values
    long maxCost = Long.MIN_VALUE;
    int[] maxCostMainBalls = new int[MAIN_BALLS_SIZE];
    int maxCostBonusBall = -1;

    // iterate over main ball combinations
    int[] mainBalls = new int[MAIN_BALLS_SIZE];
    for (mainBalls[0] = LOW_BALL; mainBalls[0] <= HIGH_BALL; mainBalls[0]++) {
      for (mainBalls[1] = mainBalls[0] + 1; mainBalls[1] <= HIGH_BALL; mainBalls[1]++) {
        for (mainBalls[2] = mainBalls[1] + 1; mainBalls[2] <= HIGH_BALL; mainBalls[2]++) {
          for (mainBalls[3] = mainBalls[2] + 1; mainBalls[3] <= HIGH_BALL; mainBalls[3]++) {
            for (mainBalls[4] = mainBalls[3] + 1; mainBalls[4] <= HIGH_BALL; mainBalls[4]++) {
              for (mainBalls[5] = mainBalls[4] + 1; mainBalls[5] <= HIGH_BALL; mainBalls[5]++) {

                // iterate over bonus balls
                for (int bonusBall = LOW_BALL; bonusBall <= HIGH_BALL; bonusBall++) {

                  // skip bonus ball if its in the main balls
                  if (contains(mainBalls, bonusBall)) {
                    continue;
                  }

                  // init match counts to zero
                  int[] matchesCount = {0, 0, 0, 0, 0, 0, 0, 0};

                  // iterate over entries
                  for (int[] entry : entries) {
                    // count matches
                    int matches = matches(entry, mainBalls, bonusBall);
                    // increment matches for number of balls matched
                    matchesCount[matches]++;
                  }

                  // get total cost of draw
                  long cost = cost(matchesCount);

                  // keep track of highest/lowest draw costs
                  if (cost < minCost) {
                    minCost = cost;
                    minCostMainBalls = mainBalls.clone();
                    minCostBonusBall = bonusBall;
                  } else if (cost > maxCost) {
                    maxCost = cost;
                    maxCostMainBalls = mainBalls.clone();
                    maxCostBonusBall = bonusBall;
                  }
                }
              }
            }
          }
        }
      }
    }

    long end = System.currentTimeMillis();

    print(start, end,
            minCost, minCostMainBalls, minCostBonusBall,
            maxCost, maxCostMainBalls, maxCostBonusBall);
  }

  private static boolean contains(final int[] a, final int key) {

    for (int x : a) {
      if (x == key) {
        return true;
      }
    }

    return false;
  }

  private static void shuffle(final int[] a) {

    Random rand = new Random(System.currentTimeMillis());

    for (int i = 0; i < a.length; i++) {

      int index = rand.nextInt(i + 1);
      int x = a[index];
      a[index] = a[i];
      a[i] = x;
    }
  }

  private static int matches(final int[] entry, final int[] mainBalls, final int bonusBall) {

    int matches = 0;
    boolean bonusMatch = false;

    for (int entryNumber : entry) {
      for (int mainBall : mainBalls) {

        if (mainBall == entryNumber) {
          matches++;
        } else if (entryNumber == bonusBall) {
          bonusMatch = true;
        }
      }
    }

    if (matches == MATCH_5 && bonusMatch) {
      matches = MATCH_5_PLUS_BONUS;
    }

    return matches;
  }

  private static long cost(final int[] matchesCount) {

    long cost = 0;

    // add jackpot prize
    if (matchesCount[MATCH_6] > 0) {
      cost = MATCH_6_PRIZE;
    }

    // add lesser prizes, multiplied by number of winners
    cost += matchesCount[MATCH_5_PLUS_BONUS] * MATCH_5_PLUS_BONUS_PRIZE
            + matchesCount[MATCH_5] * MATCH_5_PRIZE
            + matchesCount[MATCH_4] * MATCH_4_PRIZE
            + matchesCount[MATCH_3] * MATCH_3_PRIZE;

    return cost;
  }

  private static void print(
          final long start, final long end,
          final long minCost, final int[] minCostMainBalls, final int minCostBonusBall,
          final long maxCost, final int[] maxCostMainBalls, final int maxCostBonusBall) {

    System.out.printf("\n--- entries ---\n");
    System.out.printf("random entries processed = %s\n", ENTRIES_SIZE);

    System.out.printf("\n--- time ---\n");
    System.out.printf("elapsed time = %s seconds\n", (end - start) / 1000);

    System.out.printf("\n--- min ---\n");
    System.out.printf("minimum cost = %s\n", minCost);
    System.out.printf("minimum main balls = %s,%s,%s,%s,%s,%s\n",
            minCostMainBalls[0],
            minCostMainBalls[1],
            minCostMainBalls[2],
            minCostMainBalls[3],
            minCostMainBalls[4],
            minCostMainBalls[5]);
    System.out.printf("minimum bonus ball = %s\n",
            minCostBonusBall == -1 ? "any" : minCostBonusBall);

    System.out.printf("\n--- max ---\n");
    System.out.printf("maximum cost = %s\n", maxCost);
    System.out.printf("maximum main balls = %s,%s,%s,%s,%s,%s\n",
            maxCostMainBalls[0],
            maxCostMainBalls[1],
            maxCostMainBalls[2],
            maxCostMainBalls[3],
            maxCostMainBalls[4],
            maxCostMainBalls[5]);
    System.out.printf("maximum bonus ball = %s\n",
            maxCostBonusBall == -1 ? "any" : maxCostBonusBall);
  }
}

On my very old L7500 1.60GHz laptop the output looks like this:

--- entries ---
random entries processed = 10

--- time ---
elapsed time = 636 seconds

--- min ---
minimum cost = 0
minimum main balls = 1,2,3,4,5,6
minimum bonus ball = 7

--- max ---
maximum cost = 5000000
maximum main balls = 1,6,8,15,22,37
maximum bonus ball = 2

636 seconds for ten entries! Way too slow! There are some optimisations we can perform to make this faster:

  1. We only care about the bonus ball if we have 5 matching main balls - this loop can be executed only when we need it.
  2. An intersection of arrays can be used to count the main ball array/entry array matches.
  3. Sorted entry arrays can be used with a binary search to find bonus ball matches.

Lotto2.java

package org.adrianwalker.lotto;

import java.util.Arrays;
import java.util.Random;

public final class Lotto2 {

  /*
   * Estimated lotto prizes:
   *   https://www.national-lottery.co.uk/player/p/help/aboutlotto/prizecalculation.ftl
   */
  private static final int MATCH_6_PRIZE = 5000000;
  private static final int MATCH_5_PLUS_BONUS_PRIZE = 50000;
  private static final int MATCH_5_PRIZE = 1000;
  private static final int MATCH_4_PRIZE = 100;
  private static final int MATCH_3_PRIZE = 25;
  // match types
  private static final int MATCH_5_PLUS_BONUS = 7;
  private static final int MATCH_6 = 6;
  private static final int MATCH_5 = 5;
  private static final int MATCH_4 = 4;
  private static final int MATCH_3 = 3;
  // define lowest and highest ball numbers
  private static final int LOW_BALL = 1;
  private static final int HIGH_BALL = 49;
  // array sizes
  private static final int MAIN_BALLS_SIZE = 6;
  private static final int ENTRY_BALLS_SIZE = 6;
  private static final int ENTRIES_SIZE = 10;

  public static void main(final String[] args) {

    // lotto entries, could be read from a database or file?
    int[][] entries = new int[ENTRIES_SIZE][ENTRY_BALLS_SIZE];

    // draw balls for random entries
    int[] balls = {
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
      11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
      21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
      31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
      41, 42, 43, 44, 45, 46, 47, 48, 49
    };

    // create random entries for testing
    for (int i = 0; i < ENTRIES_SIZE; i++) {
      shuffle(balls);
      entries[i][0] = balls[0];
      entries[i][1] = balls[1];
      entries[i][2] = balls[2];
      entries[i][3] = balls[3];
      entries[i][4] = balls[4];
      entries[i][5] = balls[5];
      Arrays.sort(entries[i]);
    }

    long start = System.currentTimeMillis();

    // minimum values
    long minCost = Long.MAX_VALUE;
    int[] minCostMainBalls = new int[MAIN_BALLS_SIZE];
    int minCostBonusBall = -1;

    // maximum values
    long maxCost = Long.MIN_VALUE;
    int[] maxCostMainBalls = new int[MAIN_BALLS_SIZE];
    int maxCostBonusBall = -1;

    // iterate over main ball combinations
    int[] mainBalls = new int[MAIN_BALLS_SIZE];
    for (mainBalls[0] = LOW_BALL; mainBalls[0] <= HIGH_BALL; mainBalls[0]++) {
      for (mainBalls[1] = mainBalls[0] + 1; mainBalls[1] <= HIGH_BALL; mainBalls[1]++) {
        for (mainBalls[2] = mainBalls[1] + 1; mainBalls[2] <= HIGH_BALL; mainBalls[2]++) {
          for (mainBalls[3] = mainBalls[2] + 1; mainBalls[3] <= HIGH_BALL; mainBalls[3]++) {
            for (mainBalls[4] = mainBalls[3] + 1; mainBalls[4] <= HIGH_BALL; mainBalls[4]++) {
              for (mainBalls[5] = mainBalls[4] + 1; mainBalls[5] <= HIGH_BALL; mainBalls[5]++) {

                // init match counts to zero
                int[] matchesCount = {0, 0, 0, 0, 0, 0, 0, 0};

                // init bonus ball
                int bonusBall = -1;

                // iterate over entries
                for (int[] entry : entries) {

                  // count matches
                  int matches = intersection(entry, mainBalls);

                  // if 5 matches check the bonus ball
                  if (matches == MATCH_5) {

                    // iterate over bonus balls
                    for (bonusBall = LOW_BALL; bonusBall <= HIGH_BALL; bonusBall++) {

                      // skip bonus ball if its in the main balls
                      if (contains(mainBalls, bonusBall)) {
                        continue;
                      }

                      // break if the entries contain the bonus ball
                      if (contains(entry, bonusBall)) {
                        matches = MATCH_5_PLUS_BONUS;
                        break;
                      }
                    }
                  }

                  // increment matches for number of balls matched
                  matchesCount[matches]++;
                }

                // get total cost of draw
                long cost = cost(matchesCount);

                // keep track of highest/lowest draw costs
                if (cost < minCost) {
                  minCost = cost;
                  minCostMainBalls = mainBalls.clone();
                  minCostBonusBall = bonusBall;
                } else if (cost > maxCost) {
                  maxCost = cost;
                  maxCostMainBalls = mainBalls.clone();
                  maxCostBonusBall = bonusBall;
                }
              }
            }
          }
        }
      }
    }

    long end = System.currentTimeMillis();

    print(start, end,
            minCost, minCostMainBalls, minCostBonusBall,
            maxCost, maxCostMainBalls, maxCostBonusBall);
  }

  private static boolean contains(final int[] a, final int key) {

    return Arrays.binarySearch(a, key) != -1;
  }

  private static void shuffle(final int[] a) {

    Random rand = new Random(System.currentTimeMillis());

    for (int i = 0; i < a.length; i++) {

      int index = rand.nextInt(i + 1);
      int x = a[index];
      a[index] = a[i];
      a[i] = x;
    }
  }

  private static int intersection(final int[] a1, final int[] a2) {

    int count = 0;
    int i = 0;
    int j = 0;
    int a1length = a1.length;
    int a2length = a2.length;

    while (i < a1length && j < a2length) {
      if (a1[i] == a2[j]) {
        count++;
        i++;
        j++;
      } else if (a1[i] < a2[j]) {
        i++;
      } else if (a1[i] > a2[j]) {
        j++;
      }
    }

    return count;
  }

  private static long cost(final int[] matchesCount) {

    long cost = 0;

    // add jackpot prize
    if (matchesCount[MATCH_6] > 0) {
      cost = MATCH_6_PRIZE;
    }

    // add lesser prizes, multiplied by number of winners
    cost += matchesCount[MATCH_5_PLUS_BONUS] * MATCH_5_PLUS_BONUS_PRIZE
            + matchesCount[MATCH_5] * MATCH_5_PRIZE
            + matchesCount[MATCH_4] * MATCH_4_PRIZE
            + matchesCount[MATCH_3] * MATCH_3_PRIZE;

    return cost;
  }

  private static void print(
          final long start, final long end,
          final long minCost, final int[] minCostMainBalls, final int minCostBonusBall,
          final long maxCost, final int[] maxCostMainBalls, final int maxCostBonusBall) {

    System.out.printf("\n--- entries ---\n");
    System.out.printf("random entries processed = %s\n", ENTRIES_SIZE);

    System.out.printf("\n--- time ---\n");
    System.out.printf("elapsed time = %s seconds\n", (end - start) / 1000);

    System.out.printf("\n--- min ---\n");
    System.out.printf("minimum cost = %s\n", minCost);
    System.out.printf("minimum main balls = %s,%s,%s,%s,%s,%s\n",
            minCostMainBalls[0],
            minCostMainBalls[1],
            minCostMainBalls[2],
            minCostMainBalls[3],
            minCostMainBalls[4],
            minCostMainBalls[5]);
    System.out.printf("minimum bonus ball = %s\n",
            minCostBonusBall == -1 ? "any" : minCostBonusBall);

    System.out.printf("\n--- max ---\n");
    System.out.printf("maximum cost = %s\n", maxCost);
    System.out.printf("maximum main balls = %s,%s,%s,%s,%s,%s\n",
            maxCostMainBalls[0],
            maxCostMainBalls[1],
            maxCostMainBalls[2],
            maxCostMainBalls[3],
            maxCostMainBalls[4],
            maxCostMainBalls[5]);
    System.out.printf("maximum bonus ball = %s\n",
            maxCostBonusBall == -1 ? "any" : maxCostBonusBall);
  }
}

The output from this optimised version looks like this:

--- entries ---
random entries processed = 10

--- time ---
elapsed time = 17 seconds

--- min ---
minimum cost = 0
minimum main balls = 1,2,3,4,5,6
minimum bonus ball = any

--- max ---
maximum cost = 5000025
maximum main balls = 4,7,31,34,36,43
maximum bonus ball = any

17 seconds is a massive performance improvement over the previous code, but still not the sub second per entry speed we require.

The following code uses a long integer to represent the main balls as a bit mask, each 1 bit's position representing a main ball number. This bit mask can be used as a lookup to check entry numbers against:

Lotto3.java

package org.adrianwalker.lotto;

import java.util.Random;

public final class Lotto3 {

  /*
   * Estimated lotto prizes:
   *   https://www.national-lottery.co.uk/player/p/help/aboutlotto/prizecalculation.ftl
   */
  private static final int MATCH_6_PRIZE = 5000000;
  private static final int MATCH_5_PLUS_BONUS_PRIZE = 50000;
  private static final int MATCH_5_PRIZE = 1000;
  private static final int MATCH_4_PRIZE = 100;
  private static final int MATCH_3_PRIZE = 25;
  // match types
  private static final int MATCH_5_PLUS_BONUS = 7;
  private static final int MATCH_6 = 6;
  private static final int MATCH_5 = 5;
  private static final int MATCH_4 = 4;
  private static final int MATCH_3 = 3;
  // define lowest and highest ball numbers
  private static final int LOW_BALL = 1;
  private static final int HIGH_BALL = 49;
  // array sizes
  private static final int MAIN_BALLS_SIZE = 6;
  private static final int ENTRY_BALLS_SIZE = 6;
  private static final int ENTRIES_SIZE = 10;

  public static void main(final String[] args) {

    // lotto entries, could be read from a database or file?
    int[][] entries = new int[ENTRIES_SIZE][ENTRY_BALLS_SIZE];

    // draw balls for random entries
    int[] balls = {
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
      11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
      21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
      31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
      41, 42, 43, 44, 45, 46, 47, 48, 49
    };

    // create random entries for testing
    for (int i = 0; i < ENTRIES_SIZE; i++) {
      shuffle(balls);
      entries[i][0] = balls[0];
      entries[i][1] = balls[1];
      entries[i][2] = balls[2];
      entries[i][3] = balls[3];
      entries[i][4] = balls[4];
      entries[i][5] = balls[5];
    }

    long start = System.currentTimeMillis();

    // minimum values
    long minCost = Long.MAX_VALUE;
    int[] minCostMainBalls = new int[MAIN_BALLS_SIZE];
    int minCostBonusBall = -1;

    // maximum values
    long maxCost = Long.MIN_VALUE;
    int[] maxCostMainBalls = new int[MAIN_BALLS_SIZE];
    int maxCostBonusBall = -1;

    // iterate over main ball combinations
    int[] mainBalls = new int[MAIN_BALLS_SIZE];
    for (mainBalls[0] = LOW_BALL; mainBalls[0] <= HIGH_BALL; mainBalls[0]++) {
      for (mainBalls[1] = mainBalls[0] + 1; mainBalls[1] <= HIGH_BALL; mainBalls[1]++) {
        for (mainBalls[2] = mainBalls[1] + 1; mainBalls[2] <= HIGH_BALL; mainBalls[2]++) {
          for (mainBalls[3] = mainBalls[2] + 1; mainBalls[3] <= HIGH_BALL; mainBalls[3]++) {
            for (mainBalls[4] = mainBalls[3] + 1; mainBalls[4] <= HIGH_BALL; mainBalls[4]++) {
              for (mainBalls[5] = mainBalls[4] + 1; mainBalls[5] <= HIGH_BALL; mainBalls[5]++) {

                // create bitmask for match lookup
                long mainBallsBitmask = bitmask(mainBalls);

                // init match counts to zero
                int[] matchesCount = {0, 0, 0, 0, 0, 0, 0, 0};

                // init bonus ball
                int bonusBall = -1;

                // iterate over entries
                for (int[] entry : entries) {

                  // count matches
                  int matches = matches(entry, mainBallsBitmask);

                  // if 5 matches check the bonus ball
                  if (matches == MATCH_5) {

                    // iterate over bonus balls
                    for (bonusBall = LOW_BALL; bonusBall <= HIGH_BALL; bonusBall++) {

                      // skip bonus ball if its in the main balls
                      if (bitSet(mainBallsBitmask, bonusBall)) {
                        continue;
                      }

                      long entryBitmask = bitmask(entry);

                      // break if the entries contain the bonus ball
                      if (bitSet(entryBitmask, bonusBall)) {
                        matches = MATCH_5_PLUS_BONUS;
                        break;
                      }
                    }
                  }

                  // increment matches for number of balls matched
                  matchesCount[matches]++;
                }

                // get total cost of draw
                long cost = cost(matchesCount);

                // keep track of highest/lowest draw costs
                if (cost < minCost) {
                  minCost = cost;
                  minCostMainBalls = mainBalls.clone();
                  minCostBonusBall = bonusBall;
                } else if (cost > maxCost) {
                  maxCost = cost;
                  maxCostMainBalls = mainBalls.clone();
                  maxCostBonusBall = bonusBall;
                }
              }
            }
          }
        }
      }
    }

    long end = System.currentTimeMillis();

    print(start, end,
            minCost, minCostMainBalls, minCostBonusBall,
            maxCost, maxCostMainBalls, maxCostBonusBall);
  }

  private static void shuffle(final int[] a) {

    Random rand = new Random(System.currentTimeMillis());

    for (int i = 0; i < a.length; i++) {

      int index = rand.nextInt(i + 1);
      int x = a[index];
      a[index] = a[i];
      a[i] = x;
    }
  }

  private static boolean bitSet(final long bitMask, final int i) {
    return (bitMask & (1L << i)) > 0;
  }

  private static long setBit(final long bitmask, final int i) {
    return bitmask | (1L << i);
  }

  private static long bitmask(final int[] a) {

    long bitmask = 0;

    for (int i : a) {
      bitmask = setBit(bitmask, i);
    }

    return bitmask;
  }

  private static int matches(final int[] entry, final long mainBallsBitmask) {

    int matches = 0;

    for (int number : entry) {

      if (bitSet(mainBallsBitmask, number)) {
        matches++;
      }
    }

    return matches;
  }

  private static long cost(final int[] matchesCount) {

    long cost = 0;

    // add jackpot prize
    if (matchesCount[MATCH_6] > 0) {
      cost = MATCH_6_PRIZE;
    }

    // add lesser prizes, multiplied by number of winners
    cost += matchesCount[MATCH_5_PLUS_BONUS] * MATCH_5_PLUS_BONUS_PRIZE
            + matchesCount[MATCH_5] * MATCH_5_PRIZE
            + matchesCount[MATCH_4] * MATCH_4_PRIZE
            + matchesCount[MATCH_3] * MATCH_3_PRIZE;

    return cost;
  }

  private static void print(
          final long start, final long end,
          final long minCost, final int[] minCostMainBalls, final int minCostBonusBall,
          final long maxCost, final int[] maxCostMainBalls, final int maxCostBonusBall) {

    System.out.printf("\n--- entries ---\n");
    System.out.printf("random entries processed = %s\n", ENTRIES_SIZE);

    System.out.printf("\n--- time ---\n");
    System.out.printf("elapsed time = %s seconds\n", (end - start) / 1000);

    System.out.printf("\n--- min ---\n");
    System.out.printf("minimum cost = %s\n", minCost);
    System.out.printf("minimum main balls = %s,%s,%s,%s,%s,%s\n",
            minCostMainBalls[0],
            minCostMainBalls[1],
            minCostMainBalls[2],
            minCostMainBalls[3],
            minCostMainBalls[4],
            minCostMainBalls[5]);
    System.out.printf("minimum bonus ball = %s\n",
            minCostBonusBall == -1 ? "any" : minCostBonusBall);

    System.out.printf("\n--- max ---\n");
    System.out.printf("maximum cost = %s\n", maxCost);
    System.out.printf("maximum main balls = %s,%s,%s,%s,%s,%s\n",
            maxCostMainBalls[0],
            maxCostMainBalls[1],
            maxCostMainBalls[2],
            maxCostMainBalls[3],
            maxCostMainBalls[4],
            maxCostMainBalls[5]);
    System.out.printf("maximum bonus ball = %s\n",
            maxCostBonusBall == -1 ? "any" : maxCostBonusBall);
  }
}

The output from the bit mask optimised version looks like this:

--- entries ---
random entries processed = 10

--- time ---
elapsed time = 4 seconds

--- min ---
minimum cost = 0
minimum main balls = 1,2,4,5,6,8
minimum bonus ball = any

--- max ---
maximum cost = 5000025
maximum main balls = 2,20,27,43,46,47
maximum bonus ball = any

Four seconds for ten entries is approaching the sub second per entry performance we would need.

Obviously a faster algorithm is preferable to throwing more CPU at a problem, but porting the above Java code to C allows us to more effectively use the CPU we have, and gives us some speed improvement for free:

lotto.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <time.h>

#define FALSE 0
#define TRUE !FALSE
#define SIZEOF(a) (sizeof a / sizeof a[0])

/*
 * Estimated lotto prizes:
 *   https://www.national-lottery.co.uk/player/p/help/aboutlotto/prizecalculation.ftl
 */
#define MATCH_6_PRIZE 5000000
#define MATCH_5_PLUS_BONUS_PRIZE 50000
#define MATCH_5_PRIZE 1000
#define MATCH_4_PRIZE 100
#define MATCH_3_PRIZE 25
// match types
#define MATCH_5_PLUS_BONUS 7
#define MATCH_6 6
#define MATCH_5 5
#define MATCH_4 4
#define MATCH_3 3
// define lowest and highest ball numbers
#define LOW_BALL 1
#define HIGH_BALL 49
// array sizes
#define MAIN_BALLS_SIZE 6
#define ENTRY_BALLS_SIZE 6
#define MATCHES_COUNT_SIZE 8
#define ENTRIES_SIZE 10

void shuffle(int a[], int size);
int bitSet(long bitMask, int i);
long setBit(long bitmask, int i);
long bitmask(int a[], int size);
int matches(int entry[ENTRY_BALLS_SIZE], long mainBallsBitmask);
long cost(int matchesCount[MATCHES_COUNT_SIZE]);
void print(
        time_t start, time_t end,
        long minCost, int minCostMainBalls[MAIN_BALLS_SIZE], int minCostBonusBall,
        long maxCost, int maxCostMainBalls[MAIN_BALLS_SIZE], int maxCostBonusBall);

int main(int argc, char** argv) {

  // lotto entries, could be read from a database or file?
  int entries[ENTRIES_SIZE][ENTRY_BALLS_SIZE];

  // draw balls for random entries
  int balls[] = {
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
    21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
    31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
    41, 42, 43, 44, 45, 46, 47, 48, 49
  };

  // create random entries for testing
  int i;
  for (i = 0; i < ENTRIES_SIZE; i++) {
    shuffle(balls, SIZEOF(balls));
    entries[i][0] = balls[0];
    entries[i][1] = balls[1];
    entries[i][2] = balls[2];
    entries[i][3] = balls[3];
    entries[i][4] = balls[4];
    entries[i][5] = balls[5];
  }

  time_t start = time(NULL);

  // minimum values
  long minCost = LONG_MAX;
  int minCostMainBalls[MAIN_BALLS_SIZE];
  int minCostBonusBall = -1;

  // maximum values
  long maxCost = LONG_MIN;
  int maxCostMainBalls[MAIN_BALLS_SIZE];
  int maxCostBonusBall = -1;

  // iterate over main ball combinations
  int mainBalls[MAIN_BALLS_SIZE];
  for (mainBalls[0] = LOW_BALL; mainBalls[0] <= HIGH_BALL; mainBalls[0]++) {
    for (mainBalls[1] = mainBalls[0] + 1; mainBalls[1] <= HIGH_BALL; mainBalls[1]++) {
      for (mainBalls[2] = mainBalls[1] + 1; mainBalls[2] <= HIGH_BALL; mainBalls[2]++) {
        for (mainBalls[3] = mainBalls[2] + 1; mainBalls[3] <= HIGH_BALL; mainBalls[3]++) {
          for (mainBalls[4] = mainBalls[3] + 1; mainBalls[4] <= HIGH_BALL; mainBalls[4]++) {
            for (mainBalls[5] = mainBalls[4] + 1; mainBalls[5] <= HIGH_BALL; mainBalls[5]++) {

              // create bitmask for match lookup
              long mainBallsBitmask = bitmask(mainBalls, SIZEOF(mainBalls));

              // init match counts to zero
              int matchesCount[MATCHES_COUNT_SIZE] = {0, 0, 0, 0, 0, 0, 0, 0};

              //init bonus ball
              int bonusBall = -1;

              // iterate over entries
              int i;
              for (i = 0; i < ENTRIES_SIZE; i++) {

                // count matches
                int m = matches(entries[i], mainBallsBitmask);

                // if 5 matches check the bonus ball
                if (m == MATCH_5) {

                  // iterate over bonus balls
                  for (bonusBall = LOW_BALL; bonusBall <= HIGH_BALL; bonusBall++) {

                    // skip bonus ball if its in the main balls
                    if (bitSet(mainBallsBitmask, bonusBall)) {
                      continue;
                    }

                    long entryBitmask = bitmask(entries[i], SIZEOF(entries));

                    // break if the entries contain the bonus ball
                    if (bitSet(entryBitmask, bonusBall)) {
                      m = MATCH_5_PLUS_BONUS;
                      break;
                    }
                  }
                }

                // increment matches for number of balls matched
                matchesCount[m]++;
              }

              // get total cost of draw
              long c = cost(matchesCount);

              // keep track of highest/lowest draw costs
              if (c < minCost) {
                minCost = c;
                memcpy(minCostMainBalls, mainBalls, MAIN_BALLS_SIZE * sizeof (int));
                minCostBonusBall = bonusBall;
              } else if (c > maxCost) {
                maxCost = c;
                memcpy(maxCostMainBalls, mainBalls, MAIN_BALLS_SIZE * sizeof (int));
                maxCostBonusBall = bonusBall;
              }
            }
          }
        }
      }
    }
  }

  time_t end = time(NULL);

  print(start, end, minCost, minCostMainBalls, minCostBonusBall,
          maxCost, maxCostMainBalls, maxCostBonusBall);

  return (EXIT_SUCCESS);
}

void shuffle(int a[], int size) {
  srand(time(NULL));
  int i;
  for (i = 0; i < size; i++) {
    int index = rand() % (i + 1);
    int x = a[index];
    a[index] = a[i];
    a[i] = x;
  }
}

int bitSet(long bitMask, int i) {
  return (bitMask & (1L << i)) > 0;
}

long setBit(long bitmask, int i) {
  return bitmask | (1L << i);
}

long bitmask(int a[], int size) {

  long bitmask = 0;

  int i;
  for (i = 0; i < size; i++) {
    bitmask = setBit(bitmask, a[i]);
  }

  return bitmask;
}

int matches(int entry[ENTRY_BALLS_SIZE], long mainBallsBitmask) {

  int matches = 0;

  int i;
  for (i = 0; i < ENTRY_BALLS_SIZE; i++) {

    if (bitSet(mainBallsBitmask, entry[i])) {
      matches++;
    }
  }

  return matches;
}

long cost(int matchesCount[MATCHES_COUNT_SIZE]) {

  long cost = 0;

  // add jackpot prize
  if (matchesCount[MATCH_6] > 0) {
    cost = MATCH_6_PRIZE;
  }

  // add lesser prizes, multiplied by number of winners
  cost += matchesCount[MATCH_5_PLUS_BONUS] * MATCH_5_PLUS_BONUS_PRIZE
          + matchesCount[MATCH_5] * MATCH_5_PRIZE
          + matchesCount[MATCH_4] * MATCH_4_PRIZE
          + matchesCount[MATCH_3] * MATCH_3_PRIZE;

  return cost;
}

void print(
        time_t start, time_t end,
        long minCost, int minCostMainBalls[MAIN_BALLS_SIZE], int minCostBonusBall,
        long maxCost, int maxCostMainBalls[MAIN_BALLS_SIZE], int maxCostBonusBall) {

  printf("\n--- entries ---\n");
  printf("random entries processed = %d\n", ENTRIES_SIZE);

  printf("\n--- time ---\n");
  printf("elapsed time = %lu seconds\n", (end - start));

  printf("\n--- min ---\n");
  printf("minimum cost = %lu\n", minCost);
  printf("minimum main balls = %d,%d,%d,%d,%d,%d\n",
          minCostMainBalls[0],
          minCostMainBalls[1],
          minCostMainBalls[2],
          minCostMainBalls[3],
          minCostMainBalls[4],
          minCostMainBalls[5]);
  printf("minimum bonus ball = %d\n", minCostBonusBall);

  printf("\n--- max ---\n");
  printf("maximum cost = %lu\n", maxCost);
  printf("maximum main balls = %d,%d,%d,%d,%d,%d\n",
          maxCostMainBalls[0],
          maxCostMainBalls[1],
          maxCostMainBalls[2],
          maxCostMainBalls[3],
          maxCostMainBalls[4],
          maxCostMainBalls[5]);
  printf("maximum bonus ball = %d\n", maxCostBonusBall);
}

Output from the above C code:

--- entries ---
random entries processed = 10

--- time ---
elapsed time = 2 seconds

--- min ---
minimum cost = 0
minimum main balls = 1,2,3,4,5,9
minimum bonus ball = -1

--- max ---
maximum cost = 5000050
maximum main balls = 1,4,7,10,21,30
maximum bonus ball = -1

Twice as fast as the Java version for ten entries! Lets up the number of entries to 1000 to get a better idea of performance:

--- entries ---
random entries processed = 1000

--- time ---
elapsed time = 155 seconds

--- min ---
minimum cost = 0
minimum main balls = 1,2,7,9,10,11
minimum bonus ball = -1

--- max ---
maximum cost = 6101000
maximum main balls = 3,4,5,32,34,36
maximum bonus ball = 1

Processing 20,000,000 total entry lines should take 20,000 times longer than the previous output:

155 seconds * 20,000 = 3,100,000 seconds

3,100,000 seconds / (60 * 60 * 24) ~ 36 days

Even with the code optimisations and porting to C, 36 days is way longer than our 90 minute window.

Rigging the National Lottery is hard.

There will be further optimisations to be had with this code, but who cares, we all know how the Lottery is really rigged...

... MAGNETS!

Source Code

  • Java and C code available in GitHub - lotto

Thursday, 30 May 2013

Learning JavaScriptMVC Review

JavaScriptMVC is an open-source Rich Internet Application framework based on jQuery and OpenAjax. It extends those libraries with a model–view–controller architecture and tools for testing and deployment. As it does not depend on server components, it can be combined with any web service interface and server-side language.

Packt Publishing requested that I review their new book on the subject, Learning JavaScriptMVC by Wojciech Bednarski, available to buy from Packt's website here:
http://link.packtpub.com/hFZPlQ

The book starts with a preface which points out that the JavaScriptMVC framework is a client side only technology and gives an overview of the six chapters and what they cover, as well as the usual intended audience and conventions used in the book.

Chapter one starts with an introduction to JavaScriptMVC, giving details of its constituent parts: StealJS, FuncUnit, jQueryMX and DocumentJS. The chapter moves on to describe the advantages of using the JavaScriptMVC framework over other alternatives, and spends some time discussing the advantages and disadvantages of different web application architectures.

With the what and why of JavaScriptMVC laid out the author goes on to offer three methods of getting up and running with the framework:

  1. Download the complete package from the official website.
  2. Pull code and libraries from the authors GitHub.
  3. Use Vagrant to download and configure a ready to go virtual machine.

The author discourages using the first method for anything other than a fast try-out, recommends the second method for actual deployment, and advocates the third method for development as it provides an encapsulated development environment.

I'd never used Vagrant before, and liked the idea of a preconfigured and encapsulated dev environment, so I was exited to try out the third method. In retrospect I should have been suspicious of any method which requires you to download literally gigabytes of software to use a JavaScript framework.

Installing Vagrant and it's dependencies on my Linux Mint machine was pretty straight forward, just using:

apt-get install vagrant

VirtualBox is a dependency of Vagrant which was also installed. Next I downloaded the specified Vagrant configuration file and issued the command to fire up the preconfigured server and dev environment, very exciting:

vagrant up

Hundreds and hundreds of megabytes of downloads later and Vagrant reports that the server cannot start because VirtualBox required me to make changes to my BIOS settings.

Lets just think about this for a minute, installation of multiple software packages, a 1.3 GB virtual machine image download and a BIOS setting change just to run a client side JavaScript framework – and this is the recommended method to get started - absolute madness.

I persisted with the Vagrant method and continued to follow the instructions in chapter one to build a Todo list, until I noticed that changes I was making to the pages HTML and JavaScript files were not being reflected in the browser when refreshed.

After some Googling, I found this explanation and solution - clear the nginx cache in Vagrant:

http://jeremyfelt.com/code/2013/01/08/clear-nginx-cache-in-vagrant

The commands I executed in addition to the above information:-

vagrant ssh
vagrant@lucid64:~$ sudo vi /etc/nginx/nginx.conf
vagrant@lucid64:~$ sudo service nginx restart

Finally after getting a working dev environment I typed out the code in the chapter to get the basic foundation of the application. I fired up my browser to the URL specified and it didn't work.

I'd already wasted too much time on this method and decided to abandon Vagrant, and try method two - get the files from GitHub.

I quickly installed Apache web server on my machine and cloned the authors GitHib repository. I moved my source files and reloaded the project in my browser. It didn't work again.

Last but not least I decided to try the first installation method described by the author - downloading the complete JavaScriptMVC package from the official website. This method gave me an installation of JavaScriptMVC which worked. I would recommend this method.

I completed chapter one, typing out the remaining code for the application, only to find myself with an app which did nothing and reported no errors.

I also took the downloadable source code for the chapter provided by the author and ran it, only to achieve the same result.

At this point I have given up on the book, I can't waste any more time trying to get the code to work. There is no point in learning how to document and test an application which doesn't work.

This book has made me frustrated and angry and I couldn't recommend it any less. I can only assume this book is a cruel joke by the author make me feel stupid and unproductive. Hopefully I can still get some use from this book, come winter I will be using it as a £14.99 fire lighter.

You may find other reviews of this book less ranty:


Downloads From Packt

Sunday, 17 March 2013

Properties design pattern and Prototype-based programming in Java

After reading Steve Yegge's post about the properties design pattern and how it can be used to create a prototype-based object system, I thought I'd have a go at an implementation in Java to understand more.

If you haven't read the above post already, it definitely worth a read (or two), and makes everything below make more sense, give it a go.

First, I wanted to define the minimum API needed to get a working properties object as described in the Overview section. A basic properties interface:

Properties.java

package org.adrianwalker.propertiespattern;

interface Properties<N, V> {

  V get(N name);

  V put(N name, V value);

  boolean has(N name);

  V remove(N name);
}

I'll defer describing the implementation until the end, because as soon as you have the basic functionality done there is a load more you're going to want to add.

Once you've got your Properties implementation storing name/value pairs and inheriting from a prototype Properties object stored against a reserved key name, at that point, your going to want to add some way for your objects to simulate methods to manipulate the property values.

Because Java doesn't have first class functions, a methods functionality needs to be encapsulated using the Strategy pattern.

Strategy.java

package org.adrianwalker.propertiespattern;

interface Strategy<N, V, T, A> {

  T execute(Properties<N, V> properties, A... args);
}

In addition to the Strategy interface, I extended the basic Properties interface with an execute method to call a Strategy property:

ExecutableProperites.java

package org.adrianwalker.propertiespattern;

interface ExecutableProperites<N, V, T, A> extends Properties<N, V> {

  T execute(N name, A... args);
}

You're also probably going to want a way of returning an object's property names, possibly filtered with by a regex, or a globing pattern, or partial string match or some kind object comparison. So another extension to the Properties interface:

FilterableProperties.java

package org.adrianwalker.propertiespattern;

import java.util.Set;

interface FilterableProperties<N, V> extends Properties<N, V> {

  Set<N> filter(N filter);
}

And it would be good to have an interface for cloning prototype-based objects:

CloneableProperties.java

package org.adrianwalker.propertiespattern;

interface CloneableProperties<N, V> extends Properties<N, V>, Cloneable {

  CloneableProperties<N, V> clone();
}

Implementation

With all of that out of the way it's time for an implementation. This implementation stores property name/value pairs in a HashMap, and filters using regular expressions:

HashMapProperties.java

package org.adrianwalker.propertiespattern;

import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.regex.Pattern;

public final class HashMapProperties<V, T, A> implements
        Properties<String, V>,
        ExecutableProperites<String, V, T, A>,
        CloneableProperties<String, V>,
        FilterableProperties<String, V> {

  public static final String PROTOTYPE = "prototype";
  private final Map<String, V> properties;

  public HashMapProperties() {

    this.properties = Collections.synchronizedMap(new HashMap());
  }

  private HashMapProperties(final Map<String, V> map) {

    this.properties = Collections.synchronizedMap(new HashMap<String, V>(map));
  }

  @Override
  public V get(final String name) {

    if (properties.containsKey(name)) {

      return properties.get(name);
    }

    if (properties.containsKey(PROTOTYPE)) {

      Properties<String, V> prototype =
              (Properties<String, V>) properties.get(PROTOTYPE);

      return prototype.get(name);
    }

    return null;
  }

  @Override
  public V put(final String name, final V value) {

    if (PROTOTYPE.equals(name) && !(value instanceof Properties)) {

      throw new IllegalArgumentException(
              "prototype must be an instance of Properties");
    }

    return properties.put(name, value);
  }

  @Override
  public boolean has(final String name) {

    if (properties.containsKey(name)) {

      return null != properties.get(name);
    }

    if (properties.containsKey(PROTOTYPE)) {

      Properties<String, V> prototype =
              (Properties<String, V>) properties.get(PROTOTYPE);

      return prototype.has(name);
    }

    return false;
  }

  @Override
  public V remove(final String name) {

    if (properties.containsKey(PROTOTYPE)) {

      Properties<String, V> prototype =
              (Properties<String, V>) properties.get(PROTOTYPE);

      if (prototype.has(name)) {

        properties.put(name, null);

        return prototype.get(name);
      }
    }

    if (properties.containsKey(name)) {

      return properties.remove(name);
    }

    return null;
  }

  @Override
  public HashMapProperties<V, T, A> clone() {

    return new HashMapProperties<V, T, A>(properties);
  }

  @Override
  public T execute(final String name, final A... args) {

    V property = get(name);

    if (property instanceof Strategy) {

      return ((Strategy<String, V, T, A>) property).execute(this, args);
    }

    return null;
  }

  @Override
  public Set<String> filter(final String regex) {

    Pattern pattern = Pattern.compile(regex);

    Set<String> filteredNames = new HashSet<String>();

    Set<String> names = properties.keySet();

    synchronized (properties) {
      for (String name : names) {
        if (!PROTOTYPE.equals(name) && pattern.matcher(name).matches()) {
          filteredNames.add(name);
        }
      }
    }

    if (properties.containsKey(PROTOTYPE)) {
      FilterableProperties<String, V> prototype =
              (FilterableProperties<String, V>) properties.get(PROTOTYPE);
      filteredNames.addAll(prototype.filter(regex));
    }

    return filteredNames;
  }
}

Example Usage

The following example shows how you might use the above implementation. A prototype Properties object is created with a 'greeting' property and a 'getGreeting' Strategy property. These properties are inherited by a new Properties object.

The Properties object is cloned and it's greeting property is overridden.

The cloned Properties object's properties are filtered to return the getter Strategy's property name, then this is executed for the Properties object and it's clone:

Example.java

package org.adrianwalker.propertiespattern;

import java.util.Set;
import static org.adrianwalker.propertiespattern.HashMapProperties.PROTOTYPE;

public final class Example {

  public static void main(final String[] args) {
 
    // create a prototype properties object with a greeting and a 
    // strategy which returns the greeting and an argument
 
    Properties prototype = new HashMapProperties();
    prototype.put("greeting", "Hello");
    prototype.put("getGreeting", new Strategy() {
      @Override
      public String execute(final Properties properties, final Object... args) {

        return String.format("%s %s", properties.get("greeting"), args[0]);
      }
    });
 
    // create a properties object which inherit the greeting and 
    // strategy from the prototype

    HashMapProperties properties = new HashMapProperties();
    properties.put(PROTOTYPE, prototype);

    // clone the properties object and override the greeting property

    HashMapProperties clone = properties.clone();
    clone.put("greeting", "Ahoy");

    // filter for the getter properties, then execute the getter
    // on each properties object with a message argument and
    // print the message

    Set<String> getters = clone.filter("get.*");
    for (String getter : getters) {
      System.out.println(properties.execute(getter, "World"));
      System.out.println(clone.execute(getter, "Sailor"));
    }
  }
}

The example above should print the output:

Hello World
Ahoy Sailor

Finally

I've not implemented half of the functionality mentioned in original post, and not a fraction of a fraction of the possible applications for this pattern. The above code and a set of unit tests are available for download at the bottom of this page.

If you need the level of flexibility to warrant using this pattern, then, to quote the original article "use a programming language better suited for implementing the pattern: ideally, one that supports it from the ground up". So expect some JavaScript related posts in the future.

Source Code

Usage

Compile the project with 'mvn clean install'.

Tuesday, 5 February 2013

Email Sky Router Public IP Address with Gmail in Python

As far as I know, Sky Broadband don't offer a static IP address. You're going to want a way of keeping track of your externally available dynamic IP, so you can access your machine from outside of your network.

The python script below scrapes your Sky router's status page for your current IP and emails it your Gmail account.

Remember to change the Gmail username and password variables from '????????' to your Gmail authentication credentials. Run this script periodically as a cron job, and as long as you have Gmail access you'll know your IP.

#!/usr/bin/python

import smtplib
from email.mime.text import MIMEText
import urllib2
import re

# router login page
router_login = "http://192.168.0.1"
# router status url
router_status = "http://192.168.0.1/sky_router_status.html"
# router logout page
router_logout = "http://192.168.0.1/sky_logout.html"
# default sky router username and password
router_username = "admin"
router_password = "sky"
# gmail email address
email = "????????@gmail.com"
# gmail password
email_password = "????????"
# gmail smtp settings
server = "smtp.gmail.com"
port = 587
# email subject
subject = "Server IP"

# login to router
passman = urllib2.HTTPPasswordMgrWithDefaultRealm()
passman.add_password(None, router_login, router_username, router_password)
authhandler = urllib2.HTTPBasicAuthHandler(passman)
opener = urllib2.build_opener(authhandler)
urllib2.install_opener(opener)
urllib2.urlopen(router_login)

# get the first ip on the status page
ip = urllib2.urlopen(router_status).read()
ip = re.findall(r"[0-9]+(?:\.[0-9]+){3}", ip)
ip = ip[0]

# logout of router
urllib2.urlopen(router_logout)

# check for last ip address
f = open(".last_ip", "a+")
f.seek(0, 0)
last_ip = f.readline()

# has ip changed
if ip != last_ip:

  # store the new ip
  f.truncate(0)
  f.write(ip)

  session = smtplib.SMTP(server, port)

  session.ehlo()
  session.starttls()
  session.login(email, email_password)

  body = "http://" + ip

  msg = MIMEText(body)
  msg['Subject'] = subject
  msg['From'] = email
  msg['To'] = email

  session.sendmail(email, email, msg.as_string())
  session.quit()

f.close()